МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой

уравнений в частных производных

и теории вероятностей

А.В. Глушко

19.05.2022

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б.О.23 Теория случайных процессов

- 1. Код и наименование направления подготовки:
- 02.03.01 Математика и компьютерные науки
- 2. Профиль подготовки: Математические методы и компьютерные технологии в естествознании, экономике и управлении. Математическое и компьютерное моделирование.
- 3. Квалификация выпускника: Бакалавр
- 4. Форма обучения: Очная
- 5. Кафедра, отвечающая за реализацию дисциплины: Кафедра уравнений в частных производных и теории вероятностей математического факультета
- 6. Составители программы: доц., к.ф.-м.н. Райхельгауз Л.Б.
- **7. Рекомендована:** ___<u>Научно-методическим советом математического факультета</u> Протокол № 0500-03 от 24.03.2022

8. Учебный год: 2024/2025 Семестр(ы): 6

9. Цели и задачи учебной дисциплины:

Цели изучения дисциплины:

- ознакомление слушателей со стохастическим подходом описания обширного класса реальных физических процессов, не укладывающихся в рамки детерминированных конструкций
- применение методов и теоретической базы, необходимыми для осуществления прогнозов в области случайных явлений

Задачи учебной дисциплины:

- использование полученного теоретического материала для описания и изучения реальных физических процессов и явлений
- владение основами создания математических моделей (т.е. описанием явлений при помощи набора строго определенных символов и операций над ними)
- 10. Место учебной дисциплины в структуре ООП: Учебная дисциплина «Теория случайных процессов» относится к Блоку Обязательной части, т.е. является обязательной дисциплиной для изучения обучающимися. Для его успешного освоения необходимы знания и умения, приобретенные в результате обучения по предшествующим (а также параллельно изучаемым) дисциплинам: математический анализ, комплексный анализ, функциональный анализ, теория вероятностей, алгебра, дифференциальные уравнения и др. Приступая к изучению данной дисциплины, студент должен иметь теоретическую и практическую подготовку по алгебре и началам анализа, по геометрии, т.е. владеть математическими знаниями, умениями и навыками, полученными в общеобразовательных учреждениях; кроме того необходимы глубокие знания в одном из фундаментальных разделов математики математическом анализе.

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников):

Код	Название ком- петенции	Код(ы)	Индикатор(ы)	Планируемые результаты обучения
ОПК-1	Способен кон- сультировать и использовать фундамен- тальные зна- ния в области математиче- ского анализа, комплексного и функциональ- ного анализа алгебры, ана- литической геометрии, дифференци-	ОПК- 1.1	Обладает базовыми знаниями, полученными в области математических и (или) естественных наук.	Знать как использовать базовые знания, полученные в области математических и (или) естественных наук. Уметь использовать базовые знания, полученные в области математических и (или) естественных наук. Владеть теоретическими подходами к созданию математических моделей в области математической статистики; навыками работы в информационных современных системах
	альной геомет-	ОПК-	Умеет использовать их в области матема-	Знать как использовать базовые

Г	140	T .	
рии и топологии, дифференциальных уравнений, дискретной математической логики, теори вероятностей, математической статистик и случайны процессов, численных методов, теоретической меха	- - - 1 1 X	тических и (или) есте- ственных наук в про- фессиональной дея- тельности.	знания, полученные в области математических и (или) естественных наук в профессиональной деятельности Уметь использовать базовые знания, полученные в области математических и (или) естественных наук в профессиональной деятельности Владеть методами использования базовых знаний, полученных в области математических и (или) естественных наук в профессиональной деятельности
ники в профес сиональной деятельности	ОПК- 1.3.	Имеет навыки выбора методов решения задач профессиональной деятельности на основе теоретических знаний	Знать, как использовать методы решения задач профессиональной деятельности на основе теоретических знаний Уметь: работать с различными источниками научной информации, грамотно и правильно представлять свои результаты Владеть методами решения задач профессиональной деятельности на основе теоретических знаний

12.Объем дисциплины в зачетных единицах/часах (в соответствии с учебным планом) — **2** /72.

Форма промежуточной аттестации (зачет/экзамен) 6 семестр – зачет.

13. Трудоемкость по видам учебной работы

Вид учебной работы		Трудоемкость		
		Всего	По семестрам	
			6 семестр	
Контактная рабо	Контактная работа		32	
	лекции	16	16	
в том числе:	практические	16	16	
	лабораторные	-	-	

	курсовая работа	-	-
	контрольные работы	1	1
Самостоятельная работа		40	40
Промежуточная а	аттестация	зачет	-
	Итого:	72	72

13.1. Содержание дисциплины

п/п	Наименование	Содержание раздела дисциплины	Реализация
	раздела дисци-		раздела дисци-
	плины		плины с помо-
			щью онлайн-
			курса, ЭУМК*
		1. Лекции	
4.4	0		
1.1.	Случайный про-	Теорема Колмогорова (о конечномерных распределениях случайного процесса). Семейство	https://edu.vsu.ru/
	цесс. Классифика-	конечномерных распределений случайного	_ ·
	ция случайных	процесса. Математическое ожидание и	course/view.php?i
	процессов	ковариационная функция случайного процесса.	d=6499
		Теорема Колмогорова (о конечномерных	
		распределениях случайного процесса)	
		Определение случайного процесса.	
		Классификация случайных процессов. Гауссовские	
		случайные процессы: определение, свойства,	
		винеровский случайный процесс. Выборочное пространство случайного процесса.	
1.2.	Элементы стоха-	Непрерывность случайного процесса.	
	стического анали-	Дифференцирование случайного процесса.	
		Стохастический интеграл ИТО. Формула ИТО.	
	за	Стохастические дифференциальные уравнения.	
		Интегрирование случайного процесса	
		Стохастические модели финансовой математики	
1.3.	Марковские про-	Однородные марковские процессы. Марковские	
	цессы	процессы с дискретным и непрерывным временем. Однородные марковские процессы	
		Процессы рождения и гибели: определение,	
		дифференциальные уравнения Колмогорова, связь	
		с теорией массового обслуживания	
1.4.	Ветвящиеся про-	Ветвящиеся процессы Гальтона-Ватсона.	
	цессы	Вероятность вырождения	
	2.	Практические занятия	
2.1.		Выборочное пространство случайного процесса.	
		Теорема Колмогорова (о конечномерных распределениях случайного процесса).	
	Случайный про-	Определениях случайного процесса. Семейство	
	цесс. Классифика-	конечномерных распределений случайного	
	ция случайных	процесса. Математическое ожидание и	
	процессов	ковариационная функция случайного процесса.	
	процессов	Классификация случайных процессов. Гауссовские	
		случайные процессы: определение, свойства.	
		Классификация случайных процессов. Винеровские	
0.0		случайные процессы: определение, свойства.	
2.2.	Элементы стоха-	Интегрирование случайного процесса	
	стического анали-	Непрерывность случайного процесса. Дифференцирование случайного процесса.	
		<u> Диффоренцирование опучаиного процесса.</u>	l

2.3. Марковские про- цессы	Стохастический интеграл ИТО. Формула ИТО. Стохастические дифференциальные уравнения. Стохастические модели финансовой математики Контрольная работа Марковские процессы с дискретным временем. Марковские процессы с непрерывным временем. Однородные марковские процессы Процессы рождения и гибели: определение, дифференциальные уравнения Колмогорова, связь
2.4. Ветвящиеся процессы	с теорией массового обслуживания Ветвящиеся процессы Гальтона-Ватсона. Вероятность вырождения
3. C	амсостоятельная работа
3.1. Случайный процесс. Классификация случайных процессов	Определение случайного процесса. Семейство конечномерных распределений случайного процесса. Математическое ожидание и ковариационная функция случайного процесса. Выборочное пространство случайного процесса. Теорема Колмогорова (о конечномерных распределениях случайного процесса) Классификация случайных процессов. Гауссовские случайные процессы: определение, свойства, винеровский случайный процесс
3.2. Элементы стоха- стического анали- за	Непрерывность случайного процесса. Дифференцирование случайного процесса. Интегрирование случайного процесса Стохастический интеграл ИТО. Формула ИТО. Стохастические дифференциальные уравнения. Стохастические модели финансовой математики
3.3. Марковские процессы	Марковские процессы с дискретным и непрерывным временем. Однородные марковские процессы Процессы рождения и гибели: определение, дифференциальные уравнения Колмогорова, связь с теорией массового обслуживания
3.4. Ветвящиеся процессы	Ветвящиеся процессы Гальтона-Ватсона. Вероятность вырождения

13.2. Темы (разделы) дисциплины и виды занятий

Nº	Наименование темы (раздела) дисциплины	Виды занятий (часов)				
п/п		Лекции	Практи- ческие	Лабора- торные	Самостоятель- ная работа	Всего
1	Случайный процесс. Классификация случай- ных процессов	4	4	-	6	14
2	Элементы стохастического анализа	6	6	-	16	28
3	Марковские процессы	4	4	-	8	16
4	Ветвящиеся процессы	2	2	-	10	14

Итого:	16	16	-	40	72

14. Методические указания для обучающихся по освоению дисциплины

Преподавание дисциплины заключается в чтении лекции и проведении практических заниятий. На лекциях рассказывается теоретический материал, на практических занятиях решаются примеры по теоретическому материалу, прочитанному на лекциях.

При изучении курса «Теория случайных процессов» обучающимся следует внимательно слушать и конспектировать материал, излагаемый на аудиторных занятиях. Для его понимания и качественного усвоения рекомендуется следующая последовательность действий.

- 1. После каждой лекции студентам рекомендуется подробно разобрать прочитанный теоретический материал, выучить все определения и формулировки теорем, разобрать примеры, решенные на лекции. Перед следующей лекций обязательно повторить материал предыдущей лекции.
- 2. Перед практическим занятием обязательно повторить лекционный материал. После практического занятия еще раз разобрать решенные на этом занятии примеры, после чего приступить к выполнению домашнего задания. Если при решении примеров, заданных на дом, возникнут вопросы, обязательно задать на следующем практическом занятии или в присутственный час преподавателю.
- 3. При подготовке к практическим занятиям повторить основные понятия по темам, изучить примеры. Решая задачи, предварительно понять, какой теоретический материал нужно использовать. Наметить план решения, попробовать на его основе решить практические задачи.
 - 3. Выбрать время для работы с литературой по дисциплине в библиотеке.

Методические указания для обучающихся при самостоятельной работе.

Самостоятельная работа обучающихся направлена на самостоятельное освоение всех тем и вопросов учебной дисциплины, предусмотренных программой. Самостоятельная работа является обязательным видом деятельности для каждого обучающегося, ее объем по учебному курсу определяется учебным планом. При самостоятельной работе обучающийся взаимодействует с рекомендованными материалами при минимальном участии преподавателя.

Самостоятельная работа с учебниками, учебными пособиями, научной, справочной и популярной литературой, материалами периодических изданий и ресурсами сети Internet, статистическими данными является наиболее эффективным методом получения знаний, позволяет значительно активизировать процесс овладения информацией, способствует более глубокому усвоению изучаемого материала, формирует у обучающихся заинтересованное отношение к конкретной проблеме.

Вопросы, которые вызывают у обучающихся затруднения при подготовке, должны быть заранее сформулированы и озвучены во время занятий в аудитории для дополнительного разъяснения преподавателем.

Для успешного и плодотворного обеспечения итогов самостоятельной работы разработаны учебно-методические указания к самостоятельной работе студентов над различными разделами дисциплины.

Виды самостоятельной работы: конспектирование учебной и научной литературы; проработка учебного материала (по конспектам лекций, учебной и научной литературе); работа в электронной библиотечной системе; работа с информационными справочными системами, выполнение домашних заданий (практических и теоретических); выполнение контрольных работ; подготовка к практическим занятиям; работа с вопросами для самопроверки.

Все задания, выполняемые студентами самостоятельно, подлежат последующей проверке преподавателем.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины (список литературы оформляется в соответствии с требованиями ГОСТ и используется общая сквозная нумерация для всех видов источников)

а) основная литература:

№ п/п	Источник
01	Буре, В. М. Теория вероятностей и математическая статистика: / Буре В. М., Парилина Е. М. — Москва: Лань, 2013. — Допущено УМО по классическому университетскому образованию в качестве учебника для студентов вузов, обучающихся по направлениям ВПО 010400 — «Прикладная математика и информатика» и 010300 — «Фундаментальная информатика и информационные технологии». — ISBN 978-5-8114-1508-3.— <url: <a="" href="http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=10249">http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=10249>.</url:>
02	Миносцев, В. Б. Курс математики для технических высших учебных заведений. Часть 4. Теория вероятностей и математическая статистика: / Миносцев В.Б., Пушкарь Е.А., Берков Н.А., Мартыненко А.И. — Москва: Лань", 2013. — Допущено НМС по математике Министерства образования и науки РФ в качестве учебного пособия для студентов вузов, обучающихся по инженерно-техническим специальностям. — ISBN 978-5-8114-1561-8.— <url: <a="" href="http://e.lanbook.com/books/element.php?pl1_id=32817">http://e.lanbook.com/books/element.php?pl1_id=32817>.</url:>
03	<u>Горлач, Б. А.</u> Теория вероятностей и математическая статистика : / Горлач Б.А. — Москва : Лань, 2013 .— ISBN 978-5-8114-1429-1 .— <url:http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=4864>.</url:<a>

б) дополнительная литература:

№ п/п	Источник
06	Боровков Александр Алексеевич. Математическая статистика [Текст]: учеб. / А. А. Боровков. — Москва: Лань, 2010. — 704 с. — (Лучшие классические учебники). — .— ISBN 978-5-8114-1013-2: 669.90. — <url: <a="" href="http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=3810">http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=3810>.</url:>
07	Туганбаев, Аскар Аканович . Теория вероятностей и математическая статистика: / А. А. Туганбаев, В. Г. Крупин. — Москва: Лань, 2011. — 223 с.: ил.; 21. — (Учебники для вузов, Специальная литература). — .— Библиогр.: с. 221 (9 назв.). — ISBN 978-5-8114-1079-8. — <url: <a="" href="http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=652">http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=652>.</url:>
08	Флегель, Александр Валерьевич. Пособие по решению задач по теории вероятностей и математической статистике [Электронный ресурс]: [учебное пособие]: [для студ. 2 к. днев. отд-ния фак. компьютер. наук направлений: 09.03.02 -Информ. системы и технологии; 09.03.03 - Приклад. информатика; 09.03.04 - Программная инженерия; 02.03.01 - Математика и компьютер. науки]. Ч. 1. Теория вероятностей / А.В. Флегель, Е.А. Сирота, А.Ф. Клинских; Воронеж. гос. ун-т; Воронеж. гос. ун-т. — Электрон. текстовые дан. — Воронеж: Издательский дом ВГУ, 2015. — Загл. с титула экрана. — Электрон. версия печ. публи-

	кации .— Свободный доступ из интрасети ВГУ .— Текстовый файл .— Windows 2000; Ado-
	be Acrobat Reader .— <url: <a="" href="http://www.lib.vsu.ru/elib/texts/method/vsu/m15-204.pdf">http://www.lib.vsu.ru/elib/texts/method/vsu/m15-204.pdf>.</url:>

в) информационные электронно-образовательные ресурсы (официальные ресурсы интернет)*:

№ п/п	Источник					
1	Полнотекстовая база «Университетская библиотека» – образовательный ресурс. – <upl:http: www.biblioclub.ru="">.</upl:http:>					
2	Электронный каталог Научной библиотеки Воронежского государственного университета. – (http://www.lib.vsu.ru/).					

16. Перечень учебно-методического обеспечения для самостоятельной работы

№ п/п	Источник				
01	Буре, В. М. Теория вероятностей и математическая статистика: / Буре В. М., Парилина Е. М. — Москва: Лань, 2013. — Допущено УМО по классическому университетскому образованию в качестве учебника для студентов вузов, обучающихся по направлениям ВПО 010400 — «Прикладная математика и информатика» и 010300 — «Фундаментальная информатика и информационные технологии». — ISBN 978-5-8114-1508-3.— <url: <a="" href="http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=10249">http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=10249>.</url:>				
02	Миносцев, В. Б. Курс математики для технических высших учебных заведений. Часть 4. Теория вероятностей и математическая статистика: / Миносцев В.Б., Пушкарь Е.А., Берков Н.А., Мартыненко А.И. — Москва: Лань", 2013. — Допущено НМС по математике Министерства образования и науки РФ в качестве учебного пособия для студентов вузов, обучающихся по инженерно-техническим специальностям. — ISBN 978-5-8114-1561-8.— <url: <a="" href="http://e.lanbook.com/books/element.php?pl1_id=32817">http://e.lanbook.com/books/element.php?pl1_id=32817>.</url:>				
03	<u>Горлач, Б. А.</u> Теория вероятностей и математическая статистика : / Горлач Б.А. — Москва : Лань, 2013 .— ISBN 978-5-8114-1429-1 .— <url:http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=4864>.</url:<a>				
06	Баркова Л.Н. Теория случайных процессов : учебно-методическое пособие для вузов / Воронеж. Гос. Ун-т; сост.: Л.Н. Баркова, И.В. Михайлова .— Воронеж : ИПЦ ВГУ, 2008 .— 14 с. — Библиогр.: c.13 .— <url:http: elib="" m08-220.pdf="" method="" texts="" vsu="" www.lib.vsu.ru="">.</url:http:>				

17. Образовательные технологии, используемые при реализации учебной дисциплины, включая дистанционные образовательные технологии (ДОТ), электронное обучение (ЭО), смешанное обучение):

Дисциплина может реализовываться с применением дистанционных образовательных технологий, например, на платформе «Электронный университет ВГУ» (https://edu.vsu.ru/course/view.php?id=3460). Перечень необходимого программного обеспечения: операционная система Windows или Linex, Microsoft, Windows Office, LibreOffice 5, Calc, Math, браузер Mozilla Firefox, Opera или Internet.

18. Материально-техническое обеспечение дисциплины:

Учебная аудитория со специализированной мебелью для проведения занятий лекционного и семинарского типа, текущего контроля и промежуточной аттестации (394018, г. Воронеж, площадь Университетская, д. 1, пом. I)

19. Оценочные средства для проведения текущей и промежуточной аттестаций

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

Nº ⊓/⊓	Наименование раз- дела дисциплины (модуля)	Компе- тенция(и)	Индикатор(ы) достижения компетенции	Оценочные средства
1	Случайный процесс. Классификация случайных процессов	ОПК-1	ОПК – 1.1, ОПК – 1.2, ОПК – 1.3	Контрольная работа, контрольно- измерительные материалы к зачету
2	Элементы стохасти- ческого анализа	ОПК-1	ОПК – 1.1, ОПК – 1.2, ОПК – 1.3	Контрольная работа, контрольно- измерительные материалы к зачету
3	Марковские процес- сы	ОПК-1	ОПК – 1.1, ОПК – 1.2, ОПК – 1.3	Контрольная работа, контрольно- измерительные материалы к зачету
4	Ветвящиеся процессы	ОПК-1	ОПК – 1.1, ОПК – 1.2, ОПК – 1.3	Контрольная работа, контрольно- измерительные материалы к зачету
Промежуточная аттестация Форма контроля - экзамен				Перечень вопросов к экзамену

20. Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1. Текущий контроль успеваемости

Примерный перечень задач для контрольной работы

1. Найти характеристики случайного процесса

$$\xi_{t}(\omega) = t^{2}\xi_{1} + t\xi_{2} + 3,$$

если

$$\xi_1,\xi_2$$
 - случайные величины с $M\,\xi_1=2,D\,\xi_1=3,M\,\xi_2=1,D\,\xi_2=3,\;
hoig(\xi_1,\xi_2ig)=-0,3.$

2 Доказать неотрицательную определенность функции $B(t,s) = \min(t,s), t,s > 0.$

3.
$$\left\{ \xi(t) = \xi + t \right\}_{t \geq 0}$$
 — случайный процесс, где $\xi \sim N(0,1)$. Найти $M(\int\limits_{-1}^{3} \xi(t) dt)$.

4. Найти характеристики случайного процесса

$$\xi_{_t}(\omega)=t^3\xi_{_1}-2t\xi_{_2}-t^2$$
 , если
$$\xi_{_1},\xi_{_2}$$
 случайные величины с $M\xi_{_1}=1,D\xi_{_1}=3,M\xi_{_2}=2,D\xi_{_2}=1,
ho(\xi_{_1},\xi_{_2})=0,t>0.$

5. Доказать неотрицательную определенность функции

$$B(t,s) = \min(t,s) - ts, t, s \in [0,1].$$

6. $\big\{\xi(t)=\lambda\sin(t+\varphi)\big\}_{t\geq0}$ - случайный процесс, где $\lambda=const, \varphi\sim R\left[0,2\pi\right]$. Найти $M(\dot{\xi}(t))$.

Примерный перечень задач для самостоятельной работы

- 1. Пусть G случайный опыт, который может закончится одним из двух возможных исходов ω =1 или ω =2. Считая исходы равновероятными рассмотреть случайный процесс $\left\{ \xi_t(\omega) = \omega \cdot t, \omega \in \Omega = \left\{ 1,2 \right\} \right\}_{t \in [0,1]}$, наблюдаемый в данном опыте G.
- 2. Случайный опыт G выбор наудачу точки из отрезка [0,1] (геометрическая схема). Рассмотреть случайный процесс $\left\{ \xi_t(\omega) = \mathbf{I}_{\{\omega:\omega>t\}}(\omega), \omega \in \Omega = [0,1] \right\}_{t \in [0,1]}$, наблюдаемый в данном опыте G.
- 3. Пусть η случайная величина, функция распределния которой F(x), $x \in R$. Рассмотреть случайный процесс $\{\xi_t = \eta + t\}_{t \in R}$, считая что $D\eta$ существует.
- 4. Пусть η , ζ независимые N(0,1/2) случайные величины. Рассмотреть случайный процесс $\left\{ \xi_t = \frac{1}{t} (\eta + \zeta) \right\}_{t \in \mathbb{R}}$.
- 5. Пусть η , ζ случайные величины, которые имеют вторые моменты, причем η имеет симметричное относительно нуля распределение и $P\{\eta=0\}=0$. Рассмотреть случайный процесс $\left\{\xi_t=\zeta+t(\eta+t)\right\}_{t\geq 0}$. Найти также вероятность того, что реализации случайного процесса возрастают.

Текущий контроль представляет собой проверку усвоения учебного материала теоретического и практического характера, регулярно осуществляемую на занятиях.

К основным формам текущего контроля можно отнести устный опрос, проверку домашних заданий, контрольные работы.

Задание для текущего контроля и проведения промежуточной аттестации должны быть направлены *на оценивание:*

- 1. уровня освоения теоретических и практических понятий, научных основ профессиональной деятельности;
- 2. степени готовности обучающегося применять теоретические и практические знания и профессионально значимую информацию, сформированности когнитивных умений.
- 3. приобретенных умений, профессионально значимых для профессиональной деятельности.

<u>Текущий контроль</u> предназначен для проверки хода и качества формирования компетенций, стимулирования учебной работы обучаемых и совершенствования методики освоения новых знаний. Он обеспечивается проведением контрольной работы, проверкой конспектов лекций, периодическим опросом слушателей на занятиях. При текущем контроле уровень освоения учебной дисциплины и степень сформированности компетенции определяются оценками «зачтено» и «незачтено».

Описание технологии проведения

Контрольные работы проводятся письменно.

Требование к выполнению заданий

Контрольная работа

За контрольную работу ставится оценка «зачтено», в случае, если обучающийся выполнил:

- правильно в полном объеме все задания контрольной работы, показал отличные владения навыками применения полученных знаний и умений при решении профессиональных задач в рамках усвоенного материала;
- обучающийся выполнил все задания с небольшими неточностями и показал хорошие владения навыками применения полученных знаний и умений при решении профессиональных задач в рамках усвоенного материала;
- обучающий выполнил половину из предложенных заданий правильно, остальные с существенными неточностями и показал удовлетворительное владение навыками полученных знаний и умений при решении профессиональных задач в рамках усвоенного материала.

В остальных случаях обучающемуся ставится за контрольную работу «незачтено».

Если текущая аттестация проводится в дистанционном формате, то обучающийся должен иметь компьютер и доступ в систему «Электронный университет». Если у обучающегося отсутствует необходимое оборудование или доступ в систему, то он обязан сообщить преподавателю об этом за 2 рабочих дня. На контрольную работу в дистанционном режиме отводится ограничение по времени 240 минут.

20.2 Промежуточная аттестация

Промежуточная аттестация предназначена для определения уровня освоения всего объема учебной дисциплины. Промежуточная аттестация по дисциплине «Теория случайных процессов» проводится в форме зачета.

Промежуточная аттестация, как правило, осуществляется в конце семестра и завершает изучение дисциплины. Промежуточная аттестация помогает оценить более крупные совокупности знаний и умений, в некоторых случаях — даже формирование определенных профессиональных компетенций. На зачете оценивается уровень освоения учебной дисциплины и степень сформированности компетенции определяются оценками «зачтено», «незачтено».

Описание технологии проведения

На зачете студент вытягивает билет, который содержит один теоретический и один практический. Все вопросы и задачи, входящие в билеты, охватывают весь материал, изучаемый за весь семестр.

Примерный перечень заданий для промежуточной аттестации

1. При каком значении *с* матрица

$$\mathbf{P} = egin{pmatrix} c & 0,3 & 0,6 \\ 0,2 & 0,6 & 0,2 \\ 0,1 & 0 & 0,9 \end{pmatrix}$$
 будет матрицей вероятностей перехода

Цепи Маркова?

2. Найти вероятность вырождения для процесса с производящей функцией

$$f(s) = \frac{1+s+s^2+s^3}{4}$$
.

3. При каком значении с матрица

$$P = \begin{pmatrix} 0.2 & c & 0.4 \\ 0.4 & 0.1 & 0.5 \\ 0.2 & 0 & 0.8 \end{pmatrix}$$
 будет матрицей вероятностей перехода

Цепи Маркова?

4. Найти вероятность вырождения для процесса с производящей функцией

$$f(s) = \frac{1-p}{1-ps}.$$

5. При каком значении с матрица

$$P = \begin{pmatrix} 0.4 & 0.2 & 0.4 \\ 0.1 & c & 0.5 \\ 0.2 & 0.3 & 0.5 \end{pmatrix}$$
 будет матрицей вероятностей перехода

Цепи Маркова?

6. Найти вероятность вырождения для процесса с производящей функцией f(s) = 0,25s+0,75.

Требование к выполнению заданий

Критерии выставления оценок:

- оценка «зачтено» выставляется студенту, если верно дан ответ хотя бы на один вопрос;
- оценка «не зачтено» в противном случае